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Proposition 0.1 (Exercise 12-4). Let V1, . . . , Vk,W be finite-dimensional real vector spaces.
There is a canonical isomorphism

V ∗
1 ⊗ . . .⊗ V ∗

k ⊗W ∼= L(V1, . . . , Vk;W )

Proof. Define φ : V ∗
1 × . . .× V ∗

k ×W → L(V1, . . . , Vk;W ) by

φ(λ1, . . . , λk, w)(v1, . . . , vk) =

(
k∏

i=1

λi(vi)

)
w

Note that λi : Vi → R so the product
∏k

i=1 λi(vi) is in R. Note that φmaps into L(V1, . . . , Vk;W )
because it depends linearly on each vi, as each λi is linear. We claim that φ is multi-linear.
First we show linearity in the W -component.

φ(λ1, . . . , λk,a1w1 + a2w2)(v1, . . . , vk) =

(
k∏

i=1

λi(vi)

)
(a1w1 + a2w2)

= a1

(
k∏

i=1

λi(vi)

)
w1 + a2

(
k∏

i=1

λi(vi)

)
w2

= a1φ(λ1, . . . , λk, w1)(v1, . . . , vk) + a2φ(λ1, . . . , λk, w2)(v1, . . . , vk)

thus we have linearity in the W -component, that is,

φ(λ1, . . . , λk, a1w1 + a2w2) = a1φ(λ1, . . . , λk, w1) + a2φ(λ1, . . . , λk, w2)

Now we show linearity in the Vj-th component.

φ(λ1, . . . ,aλj + bαj, . . . , λk, w)(v1, . . . , vk) = λ1(v1) . . . (aλj + bαj)(vj) . . . λk(vk)w

= λ1(v1) . . . aλj(vj) . . . λk(vk)w + λ1(v1) . . . bαj(vj) . . . λk(vk)w

= aλ1(v1) . . . λj(vj) . . . λk(vk)w + bλ1(v1) . . . αj(vj) . . . λk(vk)w

= aφ(λ1, . . . λj, . . . , λk, w)(v1, . . . , vk) + bφ(λ1, . . . , αj, . . . , λk, w)(v1, . . . , vk)
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thus we have linearity in the Vj-th component,

φ(λ1, . . . , aλj + bαj, . . . , λk, w) = aφ(λ1, . . . , λj, . . . , λk, w) + bφ(λ1, . . . , αj, . . . , λk, w)

Thus φ is multilinear. Now, by the characteristic property of tensor product spaces (Propo-
sition 12.7 in Lee), there is a unique linear map

φ̃ : V ∗
1 ⊗ . . .⊗ V ∗

k ⊗W → L(V1, . . . , Vk;W )

so that φ̃ ◦ π = φ, where π : V ∗
1 × . . . V ∗

k × W → V ∗
1 ⊗ . . . ⊗ V ∗

k ⊗ W is the projection

π(λ1, . . . , λk, w) = λ1 ⊗ . . .⊗ λk ⊗ w. We claim that φ̃ is an isomorphism. It is sufficient to
show that it has trivial kernel, since it is a linear map bewteen spaces of equal dimension.
Suppose that λ1 ⊗ . . .⊗ λk ⊗ w ∈ ker φ̃. Then for all (v1, . . . , vk) ∈ V1 × . . .× Vk, we have

φ(λ1, . . . , λk, w)(v1, . . . , vk) =

(
k∏

i=1

λi(vi)

)
w = 0

For w 6= 0, this implies that
k∏

i=1

λi(vi) = 0

for all vi. Then for w 6= 0, we have λ1 ⊗ . . .⊗ λk = 0. Thus the product (λ1 ⊗ . . .⊗ λk)⊗w
is always zero. Hence the kernel of φ̃ is trivial, so it is injective, so it is an isomorphism.

Lemma 0.2 (for Exercise 14-1). Let V be a finite dimensional vector space and ω1, . . . , ωk

be covectors. If ωi = ωj for some i 6= j, then ω1 ∧ . . . ∧ ωk = 0.

Proof.

Proposition 0.3 (Exercise 14-1). Let V be a finite dimensional vector space and ω1, . . . , ωk

be covectors. Then ω1 ∧ . . . ∧ ωk = 0 if and only if ω1, . . . , ωk are linearly dependent.

Proof. First suppose that the covectors are linearly dependent. Then we can write ωk as a
linear combination of the others,

ωk =
k−1∑
i=1

aiω
i

Then

ω1 ∧ . . . ∧ ωk = ω1 ∧ . . . ∧ ωk−1 ∧
k−1∑
i=1

aiω
i =

k−1∑
i=1

ai(ω
1 ∧ . . . ∧ ωk−1 ∧ ωi)

We claim that any wedge sum with a repeated covector is zero. We have the formula

ω1 ∧ . . . ∧ ωk(v1, . . . , vk) = det(ωj(vi))

So if we have a repeated ωi, then the determinant on the RHS will be a determinant of a
matrix with a repeated column, so the determinant will be zero. Hence

ω1 ∧ . . . ∧ ωk =
k−1∑
i=1

ai(ω
1 ∧ . . . ∧ ωk−1 ∧ ωi) =

k−1∑
i=1

ai(0) = 0
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Conversely, suppose that ω1 ∧ . . . ∧ ωk = 0. Again using the determinant formula,

ω1 ∧ . . . ∧ ωk(v1, . . . , vk) = det(ωj(vi))

we know that the columns of the matrix with ij-th entry ωj(vi) are linearly dependent, soω
k(v1)

...
ωk(vk)

 =

ω
1(v1)

...
ω1(vk)

+ . . .+

ω
k−1(v1)

...
ωk−1(vk)

 =
k−1∑
i=1

ai

ω
i(v1)
...

ωi(vk)


Considering the first row of this matrix equation, we have

ωk(v1) =
k−1∑
i=1

aiω
i(vi)

for any v1 ∈ V . Thus ωk =
∑k−1

i=1 aiω
i, so the covectors are linearly dependent.

Proposition 0.4 (Exercise 14-5, Cartan’s Lemma). Let M be a smooth n-manifold with or
without boundary and let (ω1, . . . , ωk) be an ordered k-tuple of smooth 1-forms on an open
subset U ⊂ M such that (ω1|p, . . . , ωk|p) is linearly independent for each p ∈ U . Given
smooth 1-forms αi, . . . , αk on U such that

k∑
i=1

αi ∧ ωi = 0

then each αi can be written as a linear combination of ω1, . . . , ωk with smooth coefficients.

Proof. Suppose we have such 1-forms αi. By linearity of the wedge product, if we wedge
anything with zero, we get zero, so

(
ω1 ∧ . . . ∧ ω̂j ∧ . . . ωk

)
∧

(
k∑

i=1

αi ∧ ωi

)
=
(
ω1 ∧ . . . ∧ ω̂j ∧ . . . ωk

)
∧ 0 = 0

where ω̂j indicates the omission of ωj from the k-fold wedge product. By linearity, if we
expand this,we also get

(
ω1 ∧ . . . ∧ ω̂j ∧ . . . ωk

)
∧

(
k∑

i=1

αi ∧ ωi

)
= ω1 ∧ . . . ∧ ω̂j ∧ . . . ∧ ωk ∧ αj ∧ ωj

= ±ω1 ∧ . . . ∧ ωk ∧ αj

after some transpositions possibly introducing a (−1)n. Hence

ω1 ∧ . . . ∧ ω̂j ∧ . . . ∧ ωk ∧ αj ∧ ωj = 0
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By Exercise 14-1, this means that ω1, . . . , ωk, αj are linearly dependent, so

αj =
k∑

i=1

a
(j)
i ωi

Since ωi are all smooth and each αj is smooth, and the ωi form a smooth frame on U , the
component functions of αj in this smooth frame must be smooth, using proposition 10.22
(page 260 of Lee). Hence each a

(j)
i is smooth.

Proposition 0.5 (Exercise 14-6a). Define a 2-form on Rd by

ω = x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy

In spherical coordinates (x, y, z) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ) we can rewrite ω as

ω = ρ3 sinφ dφ ∧ dθ

Proof. This is simply a long, arduous, and tedious computation. Expand everything out,
collect terms with common wedge products, and apply the trigonometric identity
sin2 x+ cos2 x = 1 several times.

Proposition 0.6 (Exercise 14-6b). Define a 2-form on Rd by

ω = x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy

Then in cartesian coordinates we have

dω = 3 dx ∧ dy ∧ dz

and in spherical coordinates,

dω = 3ρ2 sinφ dρ ∧ dφ ∧ dθ

Proof. In cartesian coordinates, the computation is simple.

dω = d(x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy)

= dx ∧ dy ∧ dz + dy ∧ dz ∧ dx+ dz ∧ dx ∧ dy
= 3 dx ∧ dy ∧ dz

since each of the far right terms can be transformed into dx ∧ dy ∧ dz by performing two
swaps. Each swap introduces a negative sign, so the terms remain positive. In spherical
coordinates,

dω = d(ρ3 sinφ dφ ∧ dθ) = d(ρ3 sinφ) ∧ dφ ∧ dθ
= (3ρ2 sinφ dρ+ ρ3 cosφ dφ) ∧ dφ ∧ dθ = 3ρ2 sinφ dρ ∧ dφ ∧ dθ

Now one can do a tedious calculation to check that these are, in fact, equal, but I won’t type
that out.
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Proposition 0.7 (Exercise 14-6c and 14-6d). Let ω be the 2-form on R3 defined above. Let
(φ, θ) be angle coordinates on S2 in R3, and let ιS2 : S2 → R3 be the inclusion map. Then
on (φ, θ) ∈ (0, π)× (0, 2π), we have

ι∗S2(ω) = sinφ dφ ∧ dθ
Hence this pullback is never zero.

Proof. Using Lemma 14.16(c), we compute

i∗S2ω = (ρ3 sinφ ◦ ιS2 d(φ ◦ ι) ∧ d(θ ◦ ι) = sinφ dφ ∧ dθ
since ρ = 1 on S2. As this is defined for φ ∈ (0, π), it is nevery zero since sinφ 6= 0 on
(0, π).

Proposition 0.8 (Exercise 14-7c). Let M = {(u, v) ∈ R2 : u2 + v2 < 1} and N = R3 \ {0}.
Define F : M → N by

F (u, v) = (u, v, (1− u2 − v2)1/2)
and define

ω =
x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy

(x2 + y2 + z2)3/2

Then

dω = 0

F ∗ω = (1− u2 − v2)−1/2du ∧ dv
and we verify by direct computation that d(F ∗ω) = F ∗(dω) = 0.

Proof. First we compute F ∗ω. As a shorthand, let

ω1 =
x

(x2 + y2 + z2)3/2
ω2 =

y

(x2 + y2 + z2)3/2
ω3 =

z

(x2 + y2 + z2)3/2

Then we have

ω1 ◦ F = u ω2 ◦ F = v ω3 ◦ F = (1− u2 − v2)1/2

And we compute

d(z ◦ F ) = d((1− u2 − v2)1/2) =
−u du− v dv

(1− u2 − v2)1/2

Then we can compute F ∗ω as

F ∗ω = u dv ∧ d(z ◦ F ) + v d(z ◦ F ) ∧ du+ (1− u2 − v2)1/2du ∧ dv

= u dv ∧
(
−u du− v dv

(1− u2 − v2)1/2

)
+ v

(
−u du− v dv

(1− u2 − v2)1/2

)
∧ du+ (1− u2 − v2)1/2du ∧ dv

=
−u2 dv ∧ du

(1− u2 − v2)1/2
+
−v2 dv ∧ du

(1− u2 − v2)1/2
+ (1− u2 − v2)1/2du ∧ dv

=
u2 + v2 + (1− u2 − v2)

(1− u2 − v2)1/2
du ∧ dv

=
1

(1− u2 − v2)1/2
du ∧ dv

= (1− u2 − v2)−1/2du ∧ dv
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Now we compute dω.

dω =
∂ω1

∂x
dx ∧ dy ∧ dz +

∂ω2

∂y
dx ∧ dy ∧ dz +

∂ω3

∂z
dx ∧ dy ∧ dz

=

(
∂ω1

∂x
+
∂ω2

∂y
+
∂ω3

∂z

)
dx ∧ dy ∧ dz

=

(
−2x2 + y2 + z2

(x2 + y2 + z2)5/2
+

x2 − 2y2 + z2

(x2 + y2 + z2)5/2
+

x2 + y2 − 2z2

(x2 + y2 + z2)5/2

)
dx ∧ dy ∧ dz

=

(
0

(x2 + y2 + z2)5/2

)
dx ∧ dy ∧ dz

= 0

We now verify by direct computation that d(F ∗ω) = F ∗(dω). First we compute d(F ∗ω).

d(F ∗ω) = d((1− u2 − v2)−1/2du ∧ dv) = d((1− u2 − v2)−1/2) ∧ du ∧ dv = 0

since every term has a repeated du or dv. And since dω = 0, it is obvious that F ∗(dω) = 0
(because F ∗ is linear).
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