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Proposition 0.1 (Exercise 12-4). Let Vi, ..., Vi, W be finite-dimensional real vector spaces.
There is a canonical isomorphism

Vi®@...eVyW = L(V,..., Vi, W)

Proof. Define ¢ : Vi* x ... x V! x W — L(V4,...,Vi; W) by

o1, e w)(vr, . ) = (H Ai(vi)) w

Note that \; : V; — R so the product Hle Ai(v;) isin R. Note that ¢ mapsinto L(V3, ..., Vi; W)
because it depends linearly on each v;, as each ); is linear. We claim that ¢ is multi-linear.
First we show linearity in the WW-component.

k

(b()\l, RN )\k,alwl + CLQ’LUQ)(Ul, Ce ,’Uk) = (H Az(“z)) (lel + CLQU)Q)

i=1

k k
=a (H Ai(%‘)) wy + as (H Ai(%‘)) wa
i=1 i=1
=a10(A1y .oy Mgy wr) (U1, o, 0k) F a2d( A, Ay w2) (U1, )
thus we have linearity in the W-component, that is,
A1, - ooy Mgy a1y + agws) = a1 (A, ..oy Ap, wr) + agp(Ag, .., Ak, w2)
Now we show linearity in the Vj-th component.

O(A1s .- ad; Fbay, . A w) (v, - vk) = A (v1) - (@A + bag) (v) - Ak (o) w
= A1(v1)...aN;(v) .o A (vg)w + A (v1) - . boy(v)) o A (vg)w
=ali(v1) ... Nj(v5) . Ak (vg)w + b (v1) ... o)) .o A (vg)w
=adp(A1, ... Nj, o A w) (v, vg) F 00N,y A, w) (v, Ug)



thus we have linearity in the Vj-th component,
gb()\l,...,a)\j+b04j,...,)\k,w) :agb()\l,...,)\j,...,)\k,w)+bgz5()\1,...,aj,...,)\k,w)

Thus ¢ is multilinear. Now, by the characteristic property of tensor product spaces (Propo-
sition 12.7 in Lee), there is a unique linear map

O ViR VW — L(V4,..., Ve W)

so that gow = ¢, where 7 : V" x ...V xW = V®...® V) ®W is the projection
TAL, o A w) = A ® ... ® A ® w. We claim that 5 is an isomorphism. It is sufficient to
show that it has trivial kernel, since it is a linear map bewteen spaces of equal dimension.
Suppose that A\; ® ... ® Ay ® w € ker ¢. Then for all (vy,...,v;) € Vi x ... x Vi, we have

k
Qb()\l; tt >\k7w>(vlv s ,Uk) - <H )\Z(Uz)) w =10
i=1
For w # 0, this implies that
k
=1

for all v;. Then for w # 0, we have A\; ® ... ® A\, = 0. Thus the product (A} ® ... ® \x) @ w
is always zero. Hence the kernel of ¢ is trivial, so it is injective, so it is an isomorphism. []

Lemma 0.2 (for Exercise 14-1). Let V' be a finite dimensional vector space and w', ... w"
be covectors. If w' = w’ for some i # j, then w* A ... AwF = 0.

Proof. O]
Proposition 0.3 (Exercise 14-1). Let V be a finite dimensional vector space and w', ... w"
be covectors. Then w' A ... AwF =0 if and only if W', ..., w* are linearly dependent.

Proof. First suppose that the covectors are linearly dependent. Then we can write w* as a

linear combination of the others,
k—1

Wk = g a;w"
i=1

Then
E—1 E—1

WAL AWR :wl/\.../\wk_l/\Zaiwi :Zai(wl/\.../\wk_l/\wi)
i=1 i=1
We claim that any wedge sum with a repeated covector is zero. We have the formula

WAL AW (g o) = det(w (vg))

So if we have a repeated w?, then the determinant on the RHS will be a determinant of a
matrix with a repeated column, so the determinant will be zero. Hence

k-1 k—1
WAL AW = ai(wl/\.../\wk_l/\wi):Zai(O):0
i=1 i=1



Conversely, suppose that w! A ... Aw* = 0. Again using the determinant formula,
WAL AW (g, o) = det(w ()

we know that the columns of the matrix with ij-th entry w’(v;) are linearly dependent, so

w* (vy) w'(v1) w Y

= : 4.+ : =

Ul) _
)| |wt () Flw) | T wiw)

1 w'(v1)

a;

Considering the first row of this matrix equation, we have
k—1
wF(vy) = Z a;w"(v;)
i=1
for any v; € V. Thus w* = Z;:ll a;w', so the covectors are linearly dependent.

]

Proposition 0.4 (Exercise 14-5, Cartan’s Lemma). Let M be a smooth n-manifold with or
without boundary and let (w',...,w*) be an ordered k-tuple of smooth 1-forms on an open
subset U C M such that (w'|,,...,w"|,) is linearly independent for each p € U. Given
smooth 1-forms of,...,a" on U such that

then each o' can be written as a linear combination of w', ..., w* with smooth coefficients.

Proof. Suppose we have such 1-forms of. By linearity of the wedge product, if we wedge
anything with zero, we get zero, so

k
(wl/\.../\@j/\...wk)/\<Zo//\wi> = (WAL AB AL W)Y A0=0
i=1

where @’ indicates the omission of w’ from the k-fold wedge product. By linearity, if we
expand this,we also get

(wl/\.../\@j/\...wk)/\<Zai/\wi) =W A AN AT AT AW
i=1
=4+ AL AWEA

after some transpositions possibly introducing a (—1)". Hence

AL ADIA L AN AW =0



k

By Exercise 14-1, this means that w!, ..., w", o/ are linearly dependent, so

_ (4, i
o = E a;”’w
i=1

Since w’ are all smooth and each «; is smooth, and the w' form a smooth frame on U, the
component functions of ¢/ in this smooth frame must be smooth, using proposition 10.22
(page 260 of Lee). Hence each agj ) is smooth. O

Proposition 0.5 (Exercise 14-6a). Define a 2-form on R? by
w=xdyANdz+ydzNdx+ zdx N\dy
In spherical coordinates (x,y,z) = (psin¢cos b, psin psin b, pcos ¢) we can rewrite w as
w=p’sin¢ dp A df

Proof. This is simply a long, arduous, and tedious computation. Expand everything out,
collect terms with common wedge products, and apply the trigonometric identity
sin? x + cos® z = 1 several times. O

Proposition 0.6 (Exercise 14-6b). Define a 2-form on R by
w=xdyANdz+ydzNdx+ zdx \dy
Then in cartesian coordinates we have
dw=3dx Ndy \dz
and in spherical coordinates,
dw = 3p*sin ¢ dp A do A db
Proof. In cartesian coordinates, the computation is simple.

dw=d(x dy Ndz+y dz Ndx + z dz A dy)
=dx Ndy Ndz+dy Ndz ANdx + dz N\ dx N dy
=3dr Ndy Ndz

since each of the far right terms can be transformed into dx A dy A dz by performing two
swaps. Each swap introduces a negative sign, so the terms remain positive. In spherical
coordinates,

dw = d(p®sin ¢ dp A df) = d(p®sin ¢) A dp A db
= (3p?sin dp + p® cos ¢ do) A dp A df = 3p*sin¢ dp A do A db

Now one can do a tedious calculation to check that these are, in fact, equal, but I won’t type
that out. O]



Proposition 0.7 (Exercise 14-6¢ and 14-6d). Let w be the 2-form on R? defined above. Let
(¢,0) be angle coordinates on S* in R3, and let 1g2 : S — R3 be the inclusion map. Then
on (¢,0) € (0,7) x (0,27), we have
L2 (w) =sing do A db
Hence this pullback is never zero.
Proof. Using Lemma 14.16(c), we compute
iew = (p’sing o g d(¢poi) Ad(f o) =sing dp A df
since p = 1 on S?. As this is defined for ¢ € (0,7), it is nevery zero since sin¢ # 0 on
(0,7). O
Proposition 0.8 (Exercise 14-7c). Let M = {(u,v) € R? : u? +v* < 1} and N = R?\ {0}.
Define F : M — N by
F(U, U) = (U,’U, (1 - U'2 - ’02)1/2)

and define
rdyNdz+ydz Ndx+ zdx N\dy

- (22 + 42 + 22)3/2

Then
dw =0
Fro=(1—u*—v®)"Y2dundv
and we verify by direct computation that d(F*w) = F*(dw) = 0.

Proof. First we compute F*w. As a shorthand, let
x Yy z
_ e —
(22 + y2 + 22)3/2 (22 + 2 + 22)3/2 3 (22 + y2 + 22)3/2

Wo =
Then we have

w1 =

wokF =u wao F'=w wyo F = (1—u?—?)Y?

And we compute

—u du — v dv
(1—u2 —2)1/2

d(zoF) =d((1 —u?—v})1?) =
Then we can compute F*w as
Fro=udvAd(zoF)+vd(zoF)Adu+ (1 —u?—v?)Y2du A dv

—udu—vdv —udu—vdv 9 9\1/2
=udv A ((1—u2—v2)1/2)+v (<1_u2_v2)1/2) Adu+ (1 —u? —v*)Y2du A dv

—u? dv A du —v? dv A du ) o1
_ e /2
_(1—U2—U2)1/2+(1—u2—v2)1/2+<1 u® —v°)2du A do
w0t 4 (1—u? —0?)
N (1 — w2 —0?)1/2

1
— (1_u2_02)1/2du/\dv

= (1 —u? —v®) " Y2du A dv

du N dv




Now we compute dw.

dw :ﬁd /\dy/\dz—|—%—dm/\dy/\dz%—%—dx/\dy/\dz
&ul LUQ
de Ndy N\ dz
82
—222 +y + 22 22— 2% + 2° 2+ y* — 222

x2+y +Z2 5/2 ($2+y2+z2)5/2 <x2+y2+22)5/2) d$/\dy/\d2

< CENT +22 5/2>d:c/\dy/\dz
0

We now verify by direct computation that d(F*w) = F*(dw). First we compute d(F*w).
d(F*w) =d((1 —u® —v®) Y2du A dv) = d((1 — u® —*) V) Adundv =0

since every term has a repeated du or dv. And since dw = 0, it is obvious that F*(dw) =0
(because F* is linear). O



